Maize (Zea mays L.) Agro-Physiological Response to Potassium and Iron Fertilizer under Water Deficit Stress

Authors

  • Arash Roozbahani Department of Agronomy and Plant Breeding, Roudehen Branch, Islamic Azad University, Roudehen, Iran.
  • Mohammad Reza Akhavan Mohseni Department of Agronomy and Plant Breeding, Roudehen Branch, Islamic Azad University, Roudehen, Iran.
  • Saeed Reza Yaghoobi Professor Assistant, Faculty of Agriculture, Samangan Branch, Technical and Vocational University (TVU), North Khorasan, Iran.
Abstract:

This research was conducted to evaluate effect of potassium and iron fertilizers on agro-physiological traits affected different irrigation regime of corn in Shahryar (Tehran province, central of Iran) via a split-split plots arrangement based on randomized complete blocks design with three replications during 2015. The main plot included different irrigation regime (Normal irrigation and stop irrigation at grain filling period). Sub plot consisted different level of K2O (0, 25, 50 kg.ha-1), from water soluble potassium sulfate source. Sub-sub plot included Fe-EDDHA that apply as fertigation 2 kg.ha-1, foliar application Fe-EDTA 2 kg.ha-1, and no iron fertilizer application as control. Application of Fe-EDDHA as fertigation and Fe-EDTA as foliar application in normal irrigation increased corn seed yield from 5232 kg.ha-1 in control to 6622 and 6464 kg.ha-1 respectively but in water deficit situation were not effective. In normal irrigation, application 25 and 50 kg.ha-1 soluble potassium sulfate increased corn seed yield from 5294 kg.ha-1 in control to 6975 and 6048 kg.ha-1 respectively. Under water deficit stress application of 25 and 50 kg.ha-1 soluble potassium sulfate increased corn seed yield from 3921 kg.ha-1 to 4794 and 4807 kg.ha-1 respectively. Maximum corn seed yield was achieved when 25 kg.ha-1 soluble potassium sulfate and Fe-EDDHA applied together in 6392 kg.ha-1. Application soluble potassium sulfate and iron fertilizers increased chlorophyll a, b, and total content in different irrigation regimes. However fertigation of soluble potassium sulfate along with Fe-EDDHA was more efficient to improve chlorophyll a, b, and total and seed yield in water deficit situation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Maize (Zea mays L.) Response to Nitrogen Fertilizer under Drought Stress at Vegetative and Reproductive Stages

In the sub-tropics, water and nitrogen are the most important factors limiting the grain yield of maize. The effect of nitrogen (N) rates and drought stress at different growth stages of maize were investigated. Nitrogen treatments consisted of 100, 150, and 200  kgN.ha-1 from the urea source while water stress treatments were composed of irrigation-off since the early 10-leaf stage to emergenc...

full text

Maize (Zea Mays L.) Growth and Yield Response to Ethephon Application under Water Stress Conditions

The aim of the present investigation was to study the growth, yield and yield components of maize (Zea mays L.) single cross 704 under different levels of irrigation, plant density, and ethephon in southern Iran where this particular crop has not yet been studied in detail. A field experiment was performed in the 2004 5 growing season at the experimental farm of the College of Agriculture, Shir...

full text

Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.)

In this study we test the hypothesis that maize genotypes with reduced crown root number (CN) will have greater root depth and improved water acquisition from drying soil. Maize recombinant inbred lines with contrasting CN were evaluated under water stress in greenhouse mesocosms and field rainout shelters. CN varied from 25 to 62 among genotypes. Under water stress in the mesocosms, genotypes ...

full text

Banding Patterns Activity of Antioxidant Enzymes and Physiological Indices in the Maize (Zea mays L.) Genotypes under Water Deficit Stress

Extended Abstract Introduction and Objective: Various environmental stresses, especially water deficit stress have several and major effects on maize growth and production. Drought is one of the abiotic stresses that due to the great variety of rainfall conditions, it is known from Iran as the most important factor limiting the growth and production of crops. Therefore, the effect of water def...

full text

ROLE OF POTASSIUM IN PHYSIOLOGICAL FUNCTIONS OF SPRING MAIZE (Zea mays L.) GROWN UNDER DROUGHT STRESS

Drought stress leaves deleterious effects on growth of maize plant while potassium plays an important role in reducing such deleterious effects. To study the role of potassium on maize plant grown under drought stress an experiment was conducted at Postgraduate Agricultural Research Station, Faisalabad, Pakistan. Maize hybrids 32-F-10 (drought tolerant) and YH-1898 (drought sensitive) were grow...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 3

pages  37- 48

publication date 2017-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023